Refine Your Search

Topic

Search Results

Technical Paper

The Effect of Limiting Shoulder Belt Load with Air Bag Restraint

1995-02-01
950886
The dilemma of using a shoulder belt force limiter with a 3-point belt system is selecting a limit load that will balance the reduced risk of significant thoracic injury due to the shoulder belt loading of the chest against the increased risk of significant head injury due to the greater upper torso motion allowed by the shoulder belt load limiter. However, with the use of air bags, this dilemma is more manageable since it only occurs for non-deploy accidents where the risk of significant head injury is low even for the unbelted occupant. A study was done using a validated occupant dynamics model of the Hybrid III dummy to investigate the effects that a prescribed set of shoulder belt force limits had on head and thoracic responses for 48 and 56 km/h barrier simulations with driver air bag deployment and for threshold crash severity simulations with no air bag deployment.
Technical Paper

Aerodynamic Development of a Successful NASCAR Winston Cup Race Car

1994-12-01
942521
This paper describes the methodology used to achieve optimum aerodynamic performance of the 1989 through 1994 Chevrolet Lumina Winston Cup race car, and demonstrates the continuous improvements successfully used to respond to rule changes and competition. The development will be documented from construction of a prototype race car, through one third scale model testing, and the detail development required to continually improve performance and meet changing body rules which stringently limit body modifications. Despite these limitations, track and wind tunnel testing of development vehicles contributed to driver's and manufacturer's championships in the first racing season. The continuous improvement process, which includes ongoing wind tunnel and track tests, has resulted in improvement or at least maintenance of drag coefficient along with lift coefficient reduction of up to 0.050 each year.
Technical Paper

Evaluation of the Hybrid III Dummy Interactions with Air Bag in Frontal Crash by Finite Element Simulation

1995-11-01
952705
A deformable finite element dummy model was used to simulate air bag interaction with in-position passenger side occupants in frontal vehicle crash. This dummy model closely simulates the Hybrid III hardware with respect to geometry, mass, and material properties. Test data was used to evaluate the validity of the model. The calculated femur loads, chest acceleration and head acceleration were in good agreement with the test data. A semi-rigid dummy model (with rigid chest) was derived from the deformable dummy to improve turnaround time. Simulation results using the semi-rigid dummy model were also in reasonable agreement with the test data. For comparison purpose, simulations were also performed using PAMCVS, a hybrid code which couples the finite element code PAMCRASH with the rigid body occupant code. The deformable dummy model predicted better chest acceleration than the other two models.
Technical Paper

Washcoat Technology and Precious Metal Loading Study Targeting the California LEV MDV2 Standard

1996-10-01
961904
Meeting the California Medium-Duty truck emissions standards presents a significant challenge to automotive engineers due to the combination of sustained high temperature exhaust conditions, high flow rates and relatively high engine out emissions. A successful catalyst for an exhaust treatment system must be resistant to high temperature deactivation, maintain cold start performance and display high three-way conversion efficiencies under most operating conditions. This paper describes a catalyst technology and precious metal loading study targeting a California Medium-Duty truck LEV (MDV2) application. At the same time a direction is presented for optimizing toward the Federal Tier 1 standard through reduction of precious metal use. The paper identifies catalytic formulations for a twin substrate, 1.23 L medium-coupled converter. Two are used per vehicle, mounted 45 cm downstream of each manifold on a 5.7 L V8 engine.
Technical Paper

Ride and Handling Development of the 1997 Chevrolet Corvette

1997-02-24
970098
This paper describes the ride and handling development process used for the 1997 Corvette. Three levels of suspension are available for the 1997 Corvette: base (FE1), sport (FE3) and RTD or Real Time Damping (F45) suspensions. All suspensions will be discussed in this paper A review of the development and vehicle integration tradeoffs for each of the specific chassis components is included. Control arm bushings, springs, jounce bumpers, anti-roll bars and insulators, tires, shock mounts, shock absorber valving, real-time damping, steering development, alignment and measurements are discussed.
Technical Paper

Synthesis of Chassis Parameters for Ride and Handling on the 1997 Chevrolet Corvette

1997-02-24
970097
This paper describes the performance attributes of the all-new front and rear SLA (short-long arm) suspensions, steering system, and tires of the 1997 Corvette. The process by which these subsystem attributes flowed down from vehicle-level requirements for ride and handling performance is briefly described. Additionally, where applicable, specific subsystem attributes are rationalized back to a corresponding vehicle-level performance requirement. Suspension kinematic and compliance characteristics are described and contrasted to those of the previous generation (1984 to 1996 Model Year) Corvette. Both synthesis/analysis activities as well as mule-level vehicle development work are cited for their roles in mapping out specific subsystem attributes and related vehicle performance.
Technical Paper

The Aerodynamic Optimization of a Successful IMSA GT Race Car

1996-12-01
962518
This paper describes the methodology used to achieve optimum aerodynamic performance of the 1992 through 1995 Oldsmobile Cutlass Supreme IMSA GT race car and will demonstrate the continuous improvements successfully used to respond to rule changes and competition. The concerted effort by the sanctioning body to limit the aerodynamic performance of IMSA GT race cars for the 1995 season required a rigorous wind tunnel test program backed by track validation to maintain the necessary aerodynamic balance, cooling flows, engine induction flow, and overall competitive parity. The specific modifications that were evaluated to accommodate these rules changes will be detailed in this paper. Special test methodologies developed to better understand specific aerodynamics questions such as the effects of vehicle attitude, internal cooling flows, underbody treatments, and engine air inlet performance will also be discussed.
Technical Paper

Sideband and Sound Field Spatial Considerations in the Measurement of Gear Noise

2005-05-16
2005-01-2517
Measurement of gear noise requires accurate measurement of gear mesh harmonic sound levels. The sound signal may include sidebands, such that the frequency bandwidth and computation method of respective “order tracking” analysis will have a profound effect on measured sound levels. A further consideration is the spatial distribution of the sound field inside typical passenger cars and light duty trucks, in which sound levels can change dramatically within small distances. This paper provides a discussion of the data processing and measurement location effects at hand. It explains their influence and provides guidelines for their selection.
Technical Paper

Developing Hydrogen (H2) Specification Guidelines for Proton Exchange Membrane (PEM) Fuel Cell Vehicles

2005-04-11
2005-01-0011
In 1999, the Society of Automotive Engineers established the Fuel Cell Standards Committee (FCSC). The Committee is organized in subcommittees that address issues such as Interface, Hydrogen (H2) Quality, Safety, Performance, Emissions and Fuel Consumption, Recycling and Terminology. Since its inception the SAE/FCSC has published several recommended practices, which have drawn the attention of national and international organizations. These include SAE J2578 (Fuel Cell Vehicle Safety), SAE J2600 (Compressed H2 Surface Vehicle Refueling Devices), and SAE J2594 (Recyclability of Fuel Cell Systems). The need for having one common grade of hydrogen for all US commercial hydrogen-refueling stations for FCVs was the reason to establish the H2 Quality Task Force (HQTF) in late 2003. At the present time there is no representative US-national or international standard addressing the quality of hydrogen fuel that is acceptable for fuel cell vehicles.
Technical Paper

Streamlining Chassis Tuning for Chevrolet and GMC Trucks and Vans

2005-04-11
2005-01-0406
This paper describes some methods for greatly reducing or possibly eliminating subjective tuning of suspension parts for ride and handling. Laptop computers can now be used in the vehicle to guide the tuning process. The same tools can be used to select solutions that reduce sensitivity to production and environmental variations. OBJECTIVE Reduce or eliminate time required for tuning of suspension parts for ride characteristics. Improve the robustness of ride performance relative to variations in ambient temperature and production tolerances. PROBLEM REQUIRING SOLUTION AND METHOD OF APPROACH Traditional development programs for new vehicles include time-consuming subjective ride evaluations. One example is shock absorber tuning. Even if sophisticated models define force-velocity curves, numerous hardware iterations are needed to find valvings that will reproduce the curves. Many evaluation rides are needed to modify the valvings to meet performance targets.
Technical Paper

The Automotive Primary Power Supply System

1974-02-01
741208
This paper describes the major electrical characteristics of the automotive power supply system. It is a compilation of existing data and new information that will be helpful to both the electrical component and electronic assembly designers. Previously available battery/alternator data is organized to be useful to the designer. New dynamic information on battery impedance is displayed along with “cogging” transients, regulation limits and load dump characteristics.
Technical Paper

Relationship of Low-Temperature Cranking Resistance to Viscosity Characteristics of Multigrade Engine Oils

1956-01-01
560054
HOW well are multigrade oils performing at low temperatures? An investigation has shown that the low-tem perature properties of mulrigrade oils are often not equivalent to the single-grade oils-lOW in a mulrigrade oil may actually be 20W. One phase of this investigation, a full-scale cranking study using commercial 10W and 10W-30 oils in cars at 0 F, is discussed in detail in this paper.
Technical Paper

POWERMATIC A New Automatic for Chevrolet Transmission Heavy-Duty Trucks

1957-01-01
570012
THIS paper describes the development of a truck automatic transmission, from a statement of broad objectives through the growing pains, to road testing of the final product. Emphasis is placed upon original thinking that led to the decision to undertake such a project, compromises that suggested themselves throughout the various stages, and features tried and found wanting as well as those retained. The finished product is described full though not in detail, stress being placed upon interesting and novel design features.
Technical Paper

WHERE DOES ALL THE POWER GO?

1957-01-01
570058
AS a basis for the analyses of this symposium, a hypothetical car has been used to evaluate the engine power distribution in performance. Effects of fuel,-engine accessories, and certain car accessories are evaluated. The role of the transmission in making engine power useful at normal car speeds is also discussed. Variables encountered in wind and rolling resistance determinations are reevaluated by improved test techniques. Net horsepower of the car in terms of acceleration, passing ability and grade capability are also summarized.
Technical Paper

The Effect of Exhaust System Geometry on Exhaust Dilution and Odor Intensity

1971-02-01
710219
Diesel exhaust gas dilution and odor intensity were measured in the immediate vicinity of a transit bus equipped with a rear-mounted horizontal exhaust pipe, a rear-mounted vertical exhaust pipe, and a roof-top diffusion system. Exhaust dilution ratios were measured indoors during vehicle idle operation, using propane added to the exhaust gas as a tracer. Exhaust odor intensities were measured also indoors during vehicle idle operation by a human panel, using a threshold odor measurement technique. On the average, the dilution of the exhaust gas around the bus with the vertical exhaust pipe was about eight times greater than it was with the horizontal pipe. Odor intensity, as measured by the threshold response distance, was about 35% less with the vertical pipe than with the horizontal pipe. The roof-top diffuser was not as effective as the vertical exhaust pipe in increasing exhaust gas dilution or in reducing exhaust odor intensity.
Technical Paper

Comparison Tests Between Major European and North American Automotive Wind Tunnels

1983-02-01
830301
The results of comparative aerodynamic force measurements on a full-scale notchback-type vehicle, performed between 6 European companies operating full-scale automotive wind tunnels, were published in the SAE Paper 800140. Correlation tests with the same vehicle have been extended to 2 further European and 3 North American wind tunnels. First the geometry, the design and the flow data of the different wind tunnels is compared. The facilities compared include wind tunnels with open-test-sections, closed-test-sections and one tunnel with slotted side walls. The comparison of results, especially for drag coefficients, show that the correlation between the differently designed wind tunnels is reasonable. Problems of blockage correction are briefly discussed. The comparison tests furthermore revealed that careful design of the wheel pads and blockage corrections for lift seem to be very influential in achieving reasonable lift correlations. Six-component measurements show similar problems.
Technical Paper

Applications of Monte Carlo Simulation to Vehicle Maintenance and Component Remanufacturing Decisions

1983-02-01
830550
As component and systems sophistication in both cars and trucks increase, improved diagnostic capabilities are required to assure proper and expedient serviceability. Replacement of electrical modules, starter motors, carburetors, fuel injectors and even whole engines or transmissions is encouraged by high labor costs and continued vehicle mobility mandates. The remanufacturing business has grown and components previously discarded now provide valuable core elements to feed the industry. To achieve efficient utilization of capital, equipment and labor, remanufacturers must estimate when this supply of core elements will be available and plan their production schedules accordingly. In order to properly service private individuals and commercial fleets, minimize vehicle downtime and reduce life cycle costs, adaptation of available analytical tools must be made.
Technical Paper

Anti-Lacerative Windshield Materials; Field Evaluation by General Motors

1984-02-01
840391
This paper describes a test of 2500 General Motors passenger cars equipped with anti-lacerative windshields and driven in rental fleets. It also de840391 scribes the laboratory tests conducted prior to the fleet installation of the test windshields. Evaluation of haze development caused by abrasion of the anti-lacerative surface will take several more years of exposure. Other test results have been encouraging, except for the difficulties encountered in the removal of stickers and decals from the inner surface.
Technical Paper

Wind Tunnel-to-Road Aerodynamic Drag Correlation

1988-02-01
880250
A comprehensive test program was conducted to correlate aerodynamic drag measurements from the General Motors Aerodynamics Laboratory with coastdown results. An improved method of coastdown testing was used to minimize the sources of error in determining aerodynamic drag. Several vehicles were tested, covering a large range of aerodynamic drag values, representative of current and future production vehicles. Wind tunnel and coastdown results were determined to be in good agreement, with an average drag coefficient difference of only. 008 (2%).
Technical Paper

Truck Aerodynamics

1962-01-01
620531
A requirement for larger trucks and higher operating speed is indicated. The present report presents wind tunnel data on drag of a Chevrolet truck-trailer combination. Possible means of drag reduction are examined. Although side force and yawing moment data are presented, their effect on directional stability are not, at present analyzed.
X